Novel 3D-printed light-sensing medical device could help millions of lupus patients

 Novel 3D-printed light-sensing medical device could help millions of lupus patients


A team of engineers and doctors at the University of Minnesota Twin Cities have designed a unique 3D-printed light-sensing medical device that is placed directly on the skin and gives real-time feedback to correlate light exposure with disease flare-ups. The device could help millions of people worldwide with lupus and other light-sensitive diseases by providing access to more personalized treatments and information to determine what causes their symptoms.

The research was published in Advanced Science, an interdisciplinary premium open access scientific journal. The researchers have also filed a patent on the device and the technology is available for licensing.

According to the Lupus Foundation of America about 1.5 million Americans, and at least 5 million people worldwide, have a form of lupus. Light sensitivity is common in people with lupus with 40 to 70 percent of people with lupus finding that their disease is made worse by exposure to sunlight or even artificial light indoors. The symptoms of these flare ups for patients with lupus include rashes, joint pain, and fatigue.

I treat a lot of patients with lupus or related diseases, and clinically, it is challenging to predict when patients' symptoms are going to flare. We know that ultraviolet light and, in some cases visible light, can cause flares of symptoms-;both on their skin, as well as internally-;but we don't always know what combinations of light wavelengths are contributing to the symptoms."

Dr. David Pearson, University of Minnesota Medical School dermatologist, co-author of the study

Pearson had heard about the groundbreaking, customized 3D-printing of wearable devices developed by University of Minnesota mechanical engineering Professor Michael McAlpine and his team and contacted him to collaborate on finding a solution for his problem.

McAlpine's research group worked with Pearson to develop a first-of-its-kind fully 3D-printed device with a flexible UV-visible light detector that could be placed on the skin. The device is integrated with a custom-built portable console to continuously monitor and correlate light exposure to symptoms.

"This research builds upon our previous work where we developed a fully 3D printed light-emitting device, but this time instead of emitting light, it is receiving light," said McAlpine, a co-author of the study and Kuhrmeyer Family Chair Professor in the Department of Mechanical Engineering. "The light is converted to electrical signals to measure it, which in the future can then be correlated with the patient's symptoms flare ups."

Comments

Popular posts from this blog

What Are Puffy Nipples

Dynamic Good Mood Foods Which Can Boost Your Mood